当前位置:城玮文档网 >作文大全 > 气体动理论

气体动理论

时间:2022-07-25 10:25:03 来源:网友投稿

 第十九章

 气体动理论 一、基本要求 1.

 了解气体分子热运动图像,能从宏观和统计意义上理解压强、温度、内能等概念。

 2.

 初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。

 3.

 理解麦克斯韦速率分布律及速率分布函数和速率分布曲线的物理意义,了解玻尔兹曼能量分布律。

 4.

 理解能量按自由度均分定理。

 5.

 了解气体分子平均碰撞频率及平均自由程。

 二、重要概念和基本规律 1. 平衡态 在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。

 2. 理想气体状态方程 在平衡态下,理想气体各参量之间满足关系式 vRT pV 

 或

 n k T p 

 式中 v 为气体摩尔数,摩尔气体常量 31 . 8  R J〃mol1 〃K1  玻尔兹曼常量 2310 38 . 1  k

 J〃K1  3. 理想气体压强的微观公式

  tn nm p  32312 4. 温度及其微观统计意义 温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上 kTt23

 5. 能量均分定理 在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT。以i 表示分子热运动的总自由度,则一个分子的总平均动能为 kTit2

 6. 速率分布函数 NddNf  ) (

 麦克斯韦速率分布函数 kT mekTmf2 / 2232)2( 4 ) ( 

 7. 三种速率 最概然速率

  m o l m o lpMRTMRTmkT41 . 12 2   

 平均速率

 m o l m o lMRTMRTmkT60 . 18 8   

 方均根速率

 m o l m o lMRTMRTmkT73 . 13 32   

 8. 玻尔兹曼分布律 平衡态下某状态区间(粒子能量为  )的粒子数正比于kTe/   重力场中粒子数密度按高度的分布(温度均匀):

 kT mghe n n/0

 9. 范德瓦尔斯方程 采用相互作用的刚性球分子模型,对于 1mol 气体 RT b VVapmm   ) )( (2 10. 气体分子的平均自由程 n d n22121    11. 输运过程 内摩擦 dSdzdudfz 0) (    ,

       mn31 热传导 dSdtdzdTdQz 0) (   

 Vc mn   31 扩散

  dSdtdzdD dMz 0) (  ,

    31D

 三、习题选解 19- -1 1.

 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。它是否是一个平衡态?为什么? 答:这不是一个热力学平衡态。

 平衡态是指热力学系统在不受外界影响的条件下,系统的宏观性质不随时间变化的状态。所谓的没有外界影响,指外界对系统既不做功又不传热。

 两端分别与冰水混和物和沸水接触的铜棒,在和沸水接触的一端,铜棒不断吸收热量,而在和冰水混合物接触的一端,铜棒不断的释放热量。铜棒和外界以

 传热的方式进行能量交换,因而它不是一个热力学平衡态。

 19- -2 2. (1)水银气压计中混进了一个空气泡,因此它的读数比实际的气压要小一些。当精确的气压计的水银柱为 0.768m 时,它的水银柱只有 0.748m 高,此时管中水银面到管顶的距离为 0.080m。试问此气压计的水银柱为 0.734m 高时,,实际的气压应是多少?(把空气看作理想气体,并设温度不变)

 (2)水银气压计中,从水银池表面到封闭管管顶的距离为 Lmm,在标准气压计的读数为 HmmHg 和温度 C to1的情况下,有一个空气泡进入管中,因此水银柱的长减到 h 1 mm。求这一气压计的气压修正量 p  的表达式,引入 p  后可对任何温度 C to的任何压强读数 h 作修正。

 解:(1)设第一状态气体的压强为1p ,体积为1V ;第二状态气泡的压强为2p ,体积为2V ,气压计截面积为 S ,如图所示 1p

 =768-748=20mmHg 1V

 =0.080 S

  2V =[0.080+(0.748-0.734)] S

 由于温度不变,有2 2 1 1V p V p  ,所以

 20] 014 . 0 080 . 0 [080 . 0) (1212  pVVp mmHg=17mmHg 实际压强为 17 734  p mmHg=1.00×10 5 Pa (2)设气压计的截面积为 S 。当标准气压计的读数为 H ,温度为1T ,气压计中气柱的体积为 S h L ) (1 ,其压强应是 ) (1h H  ;如果在温度 T 时,水银柱高度是 h ,则气泡的体积 S h L ) (  ,压强是 p  。据气体状态方程,有

 TS h L pTS h L h H ) ( ) )( (11 1   所以

 11 1) () )( (T h LT h L h Hp  

 测出的压强应为

 p h p   

 19- -3 3. . 如图所示,两个相同的容器装着氢气, 以一光滑水平玻璃管相连,管中用一滴水银 做活赛,当左边容器的温度为 C00 ,而右边 容器的温度为 C020 时,水银滴刚好在中央 维持平衡。试问:

 (1)

 当右边容器的温度由 C00 升到 C010 时,水银是否会移动?怎样移动? (2)如果左边温度升到 C010 ,而右边升到 C030 ,水银滴是否会移动? (3)如果要使水银滴在温度变化时不移动,则左右两边容器的温度变化应遵从什么规律? 解:(1)可假设水银柱不移动,这样左边容器从 C0 升到 C10 时,压强会增大,所以水银将向右侧移动。

 (2)同样假设水银滴不移动,左右两侧体积不变。以0p 表示左右两侧未升温前的压强,1p 表示升温后左侧压强,2p 表示升温后右侧压强,则

 0 127310 273p p

  0 220 27330 273p p

 可以看出

  2 1p p 

 水银滴左侧的压强大于右侧的压强,水银滴将向右侧移动。

 (3)依条件

 2730 1pTp左

 2 9 3 20 2730 0 2p pTp右

 由2 1p p 

 293273右左TT 19- -4 4.(1)推导压强公式时,为什么不考虑分子间的相互碰撞? (2)推导压强公式时,如果不假设每个分子与器壁的碰撞是弹性的,而把气体分子的动量改变分成两部分来看:一是向壁运动的分子动量的消失,二是离壁运动的分子动量的获得。按此观点,再按平衡态下大量分子的统计性质,如何说明压强公式仍然存在。

 :

 答:(1)因为分子是全同的,分子碰撞后交换速度,不会改变速度的分布。

 (2)决定器壁压力的大小是大量分子单位时间内给予器壁法线方向的冲量,它等于分子沿器壁法线方向动量的变化率。在平衡状态下,当分子向器壁运动时,也有相等的大量分子离开器壁运动。按照统计规律,单位时间内向器壁上每单位面积运动的分子向前的动量总共消失 6 /2 nm ;单位时间内离开器壁每单位面积运动的分子向后的动量总共获得 6 /2 nm 。单位时间内与单位面积器壁作用引起分子动量的总变化为 3 /2 nm ,所以压强公式仍然成立。

 19- -5 5. 每秒钟有 1.0×10 23 个氢分子(质量为 3.3×10 -27 ㎏)以 1.0×10 3 m〃s -1 的速度沿着与器壁法线成 45 0 角的方向撞在面积为 2.0×10 -4 ㎡的器壁上,求氢分子作用在器壁上的压强 解:如图所示与器壁碰撞后,每一个分 子的动量改变为045 cos 2  m

 每秒总的动量改变为

  045 cos 2  nm

  压强

 43 27 2310 0 . 22210 0 . 1 10 3 . 3 10 0 . 1 245 cos 2       Anmp

 310 3 . 2   Pa 19- -6 6. .(1)具有活塞的容器中盛有一定量的气体,如果压缩气体并对其进行加热,使它的温度 27 ℃升到 177℃,体积减小一半,求气体压强变化为多少? (2)此时气体分子的平均平动动能变化多少?分子的方均根速率变化多少? 解:(1)由理想气体状态方程 11 122 2TV pTV p

  1 221V V 

  300 27 2731   T K 450 177 2732   T K 有

 1 112211 233004502 p pTTVVp p       

 (2)由题意

  1 123kT  

  2 223kT  

 1 1121 25 . 1300450       TT 温度为1T 时,方均根速率为

  m o lMRT 1123) ( 

  温度为2T 时,方均根速率为

 m o lMRT 2223) ( 

 所以

 22 . 1 5 . 1) () (121222  TT 19- -7 7. (1)试计算在什么温度时氢分子的方均根速率等于从地球表面逃逸的速度。对氧分子作同样的计算。

 (2)试问在月球表面上,计算结果是否相同,假设月球表面的重力加速度为 0.16g。

 (3)在地球的上层大气中,温度约为 1000K 左右。你认为该处是否有很多

 氢气? 解:(1)第二宇宙速率 2 . 112  km〃s1  310 2 . 11  

 m〃s1 。分子的方均根速率232HMRT 。氢分子的摩尔质量310 22 HM

 kg 。

 由题意22  。

 4 2 332210 0 . 1 ) 10 2 . 11 (31 . 8 310 2322    RMTHHK

 氧分子摩尔质量为

 310 322 OM

 kg

  有 5 2 332210 6 . 1 ) 10 2 . 11 (31 . 8 310 32322    RMTOOK (2)月球表面逃逸速率622 1110 738 . 110 36 . 7 10 67 . 6 22    月月RGM

 m〃s1  310 38 . 2  

 m〃s1  有

 2 2 3310 5 . 4 ) 10 38 . 2 (31 . 8 310 22   HT K

 2 2 3310 2 . 7 ) 10 38 . 2 (31 . 8 310 322   OT K

 (3)地球大气层中,不会有很多氢气,会有较多氧气。

 19- -8 8. 道尔顿(Dalton’s Law)定律指出,当不起化学作用的气体在一容器中混合时,在给定温度下每一成分气体所作用的压强和该气体单独充满整个容器时的压强相同;并且总压强等于各成分气体的分压强之和。试根据气体动理论并利用式(19-5)导出道尔顿定律。

 解:气体动理论给出的压强公式为    n m n nm p32)21(32312 2   

 设几种气体混合贮在同一容器中,单位体积内所含各种气体的分子数分别为 , ,2 1n n ,则单位体积内混合气体的总分子数为

    2 1n n n

 又混合气体的温度相同,根据能量均分定理,不同成份的气体分子平均动能相等,即

 kT232 1       

 混合气体的压强为

   ) (322 1    n n p

 2 2 1 13232  n n  

 2 1p p  

 其中

  kT n kT n n p1 1 1 1233232   

 kT n kT n n p2 2 2 2233232   

 〃〃〃〃〃〃    , ,2 1p p 即每一成分气体单独充满整个容器时的压强,并且总压强等于各成分气体的压强之和,这就是道耳顿分压定律。

 19- -9 9. 水蒸气分解为同温度的氢气和氧气,即 H 2 O=H 2 +21O 2 ,当不计振动自由度时,求此过程中内能增加的百分比。

 解:设初始水蒸气的分子总数为0N 由 H 2 O  H 2 +21O 2

 分解后将有0N 个 H 2 分子和20N个 O 2 分子 刚性双原子分子可用三个平动自由度( 3  t ) ,和两个转动自由度( 2  r ) 完整的描述其运动,刚性三原子分子则需要用三个平动自由度( 3  t )和三个转动自由度( 3  r )描述其运动。由能量均分原理知一个分子的平均能量为

 kT r t ) (21  

 温度为 T 时水蒸气的总能量为 kT N kT N E0 0 03 ) 3 3 (21  

 若分解为氢气和氧气后,气体温度值为 T ,这时气体总能量为氢分子能量和氧分子能量之和,用E表示有 kT N kTNkT N E000415) 2 3 (212) 2 3 (21     

 能量增加的百分比为

  % 25413341500 000  kT NkT N kT NEE E 19- - 10. 一个能量为 10 12 eV 的宇宙射线粒子,射入氖管中,氖管中 0.01mol,如果宇宙射线粒子的能量全部被氖气分子所吸收而变成热运动能量,氖气温度能升高几度。

 解:0.01mol 氖气共有AN 01 . 0 个原子,其中AN 为阿伏加德罗常数。

 氖为惰性气体,氖分子以单元子形式存在,若气体温度为 T ,每一个氖分子的平均能量为 kT23。相应的总能量为 kT N A2301 . 0 ,若射线能量被每个氖分子平均吸收。

  E  = T k N A  2301 . 0

 623 2319 1210 28 . 110 38 . 1 5 . 1 10 02 . 6 01 . 010 6 . 1 102301 . 0       k NETA 19- - 11. 一容器被中间隔板分成相等的两半,一半装有氦气,温度为 250K,另一半装有氧气,温度为 310K 。两者压强相等。求去掉隔板两种气体混合后的温度。

 解:隔板未去掉前,容器两侧压强和体积相等设为 p 和 V ,再设氦分子摩尔数为1v ,氧气分子摩尔数为2v ,由理想气体方程有 1 1 RTv pV 

 ,

  2 2 2RT v pV 

 11RTpVv 

  ,

  22RTpVv 

 氦气为单原子分子,氧气为双原子分子,由能量均分定理,每一个分子的平均能量为

 kT s r t ) 2 (21   

 其中 t 为平动自由度, r 为转动自由度, s 为振动自由度 对于氦气,有 ) 0 , 0 , 3 (    t r r

 kTHe23 

 对于双原子分子, 2 , 3   r t 在常温下,不足以激发原子的振动,可作为刚性双原子考虑,这时 0  t ,因而有

  kTO252  初始状态的总能量为

 2 2 1 12523kT N v kT N v EA A 

  其中AN 为阿伏加德罗常数。

 若去掉隔板后两种气体混合温度为 T ,其总能量为

 kT N v kT N v EA A25232 1  

 去掉隔板的过程不会对系统有任何外界的影响,能量守恒有 E E  

 2 2 1 12523kT N v kT N vA A kT N v kT N vA A25232 1 

 将1v 和2v 代入有 kT NRTpVkT NRTpVkT NRTpVkT NRTpVA A A A252325232 12211  

 化简后得

 8 5 32 1 TTTT

 284250 5 310 3250 310 85 381 22 1   T TT TT K

 19- - 12. 已知 ) (  f 是速率分布函数,说明以下各式的物理意义。

 (1)

   d f ) ( (2)

   d nf ) ( 其中 n 是分子数密度,(3)

 21) (   d f (4)

 pd f 0) (其中p 为最概然速率;(5)

   d fp) (2 答:(1)NdNd f    ) ( ,是速率在  到   d  之间的分子数与总分子数的比。

 (2)

 dN d nf    ) ( ,是单位体积内,速率在  到   d  之间的分子数。

 (3)

 2121) () (    Nd Nfd f

 是介于1 到2 之间的分子速率之和与总分子数的比值,它没有明显物理意义。

 (4)Nd Nfd fpp  00) () (

  是分子速率在 0 到p 之间的分子数与总分子数的比值,即速率小于最概然速率的分子的比例。

 (5)Nd Nfd fppv    2) () (2

 是速率大于p 的速率平方之和与总分子数的比值。这也是一个物理意义不明显的量。

 19- - 13. 将气体中某一个分子在长时间内可能取的速率对时间求平均所得的结果,按麦克斯韦速率分布所得平均速率有无差别?若要使二者相等,观测的时间满足什么条件? 答:麦克斯韦速率分布律是指在平衡态下,分布在任一速率区间    d  ~ 的分子数 dN 与总分子数 N 之比是速率  的函数

   d fNdN) ( 

 麦克斯韦速率的平均速率是大量分子的速率的平均值     00 0) () (      d fNd NfNdN 对某一个分子而言,它不断与其它分子碰撞,速率也在不断变化,在时间T t t 0 0~ 时间内跟踪某一个分子,分子对时间的平均速率为

 dt tTT tt 00) (1 

  

 是大量分子速率分布的平均值,  是某一个分子速率对时间的平均值。两者的物理意义有本质的区别。

 各态历经假说提出路程的连续性,当力学体系从任一初态运动后,只要时间足够长,力学体系将经历所有的微观状态。对某一分子而言,在初始时刻其速率可能是0 ,在其后足够长的时间内,这一分子将经历速率在  ~ 0 范围内的所有状态。这时分子对时间的平均速率与大量分子的麦克斯韦平均速率相等。

 19- - 14. 有 N 个粒子,其速率分布函数为

 0) (0aaf

  ) 2 () 2 () 0 (00 00       (1)

 做速率分布曲线并求常量 a; (2)

 分别求速率大于0 和小于0 的粒子数 (3)

 求粒子的平均速率 解:(1)速率分布曲线如图所示。

 由归一化条件

 1 ) (0  d f

 1000200   ad da

 有

  1210 0    a a

 032 a

  (2)若总分子数为 N ,则速率大于0 的分子数为 N d N d Nf N3232) (00 0201      速率小于0 的分子数为   daN d Nf N  0 00002) (

 N N3121322020   (3)平均速率为

      d d d f    0002002003232) (

 0002020323 0 92 

 0202000911) 4 (3192      

 19- - 15. 设氢气的温度为 300K,求速率为 3000m〃s -1 到 3010m〃s -1 之间的分子数1n与速率在 1500 m〃s -1 到 1510 m〃s -1 之间的分子数2n 之比。

 解:麦克斯韦速率分布率是  d ekTmN dNkTm22232)2( 4

 222223122123212221)2( 4)2( 4  kTmkTmekTmNekTmNNN 212221 2122) (2exp    kTm 由题意

 1  102    m〃s1 

 3 0 0 01 

 m〃s1 

 1 5 0 02 

 m〃s1  氢气分子质量为 m=2×1.67×10 -27 ㎏=3.34×10 -27 ㎏ 代入数据有 27 . 0 )15003000( )300 10 38 . 1 2) 3000 1500 ( 10 34 . 3(exp2232 2 2721     NN 19- - 16. (1)混合气体处于平衡态时,各种气体的麦克斯韦速率分布与其它气体是否存在无关。请说明这一点。

 (2)证明:由 N 个粒子组成的一团气体,不管其速率具体分布如何,它的方均根速率2 不会小于平均速率  。

 答:(1)热平衡时各种气体的温度都相同,每种气体的温度都等于混合气体的温度,而各种气体混合后其分子质量不变,气体的麦克斯韦速率分布只与气体的温度和分子质量有关,而与气体的体积和压强无关,所以各种气体单独存在时的速率分布与混合时的速率分布相同。

 (2)设 N 个粒子组成气体的速率分布函数为 ) (  F ,即处于区间    d  ~ 区间内粒子数 N  与粒子总数 N 之比为

   d FNN) (  由归一化条件有 1 ) (0  d F

 02 2) (     d F

 0) (     d F

 利用定积分的性质     dx x g dx x f dx x g x fbababa     222) ( ) ( ) ( ) (

 令 ) ( ) (   F f 

  ) ( ) (    F g 

 则有

           d F d F d F F       02 2020) ) ( ( ) ) ( ( ) ( ) (

         d F d F d F ) ( ) ( ) (02020        即

  2 2) (  

 2 

 即方均根速率不会小于平均速率。

 19- - 17. 设地球大气使等温的,温度为,海平面萨和气压为,今测得某山顶的气压,求山高,一直空气的平均相对分子质量为 28.97。

 解:分子数密度随重力势能的分布为 kTmgze en z n ) (

 其中0n 为海平面上的分子数密度。

 压强

  kTmgzkTe n nkT p 0kTmgze p 0 

 590750ln8 . 9 10 97 . 28278 31 . 8ln30  ppmgkTz m=310 95 . 1  m

 19- - 18. 令221  m  表示气体分子的平动能。试根据麦克斯韦速率分布律证明:平动能在区间    d  ~ 内分子数占总分子数的比率为

    d e kT d fkT   2 1 2 3) (2) (

 根据上式求分子平动能  的最概然概率值及平均平动能 

 解:麦克斯韦速率分布率是    d ekTmd fkTm22232)2( 4 ) (

 令

 221  m 

 则

 m2

     dmdmd21 22121  代入麦克斯韦速率分布公式   dmem kTmd fkT21 2)2( 4 ) (23  =  d e kTkT 23) (2  最概然值可由 0 ) (    f 求出,也可由 0 ) ( (ln    f 求出。

  01 121) ( (ln    kTf

 kTp21 

 平均动能

       d e kT d fkT   230 0) (2) ( =23kT

 19- - 19. (1)在一定的温度和体积下,由理想气体状态方程和范德瓦尔斯方程算出的压强哪个大?为什么? (2)范氏气体和理想气体内部压强产生的原因是否相同? 答:(1)范德瓦耳斯气体的压强修正公式为

  2m mVab VpTp 

 分子体积对压强的修正使压强偏大,分子间引力对压强的修正使压强偏小,一般而言,不能判断范德瓦耳斯气体压强比理想气体的压强大还是小。

 (2)理想气体认为气体分子与器壁的碰撞是弹性的,碰撞过程中间分子的能量守恒。范氏气体则要考虑气体分子与器壁分子间的引力作用,但是气体内部压强

 产生的机制都是由于分子与器壁碰撞后动量改变而施于器壁的冲量产生的,压强产生的原因是相同的。

 19- - 20. N 2 的范德瓦尔斯常量610 39 . 1  a m 6 〃atm〃mol -1 ,610 39  b m 3 〃mol -1 ;写出 20mol 氮气的范德瓦尔斯方程,若将 20mol 的氮气不断压缩,它将接近多大的体积?假设此时氮分子是紧密排列的,试估算氮分子的线度大小。此时由于气体分子间的引力所产生的内压强大约是多少大气压? 解:范德瓦耳斯方程是 RT b VVapmm   ) )( (2 其中mV 是气体摩尔体积。若 n mol 的气体体积为 V , 有nVV m  , n 摩尔气体的范德瓦耳斯方程为 RT bnVVa np    ) )( (22

  nRT nb VVa np    ) )( (22 RT VVp 20 ) 10 39 20 )(20 10 39 . 1(62 62     RT VVp 20 ) 10 8 . 7 )(10 56 . 5(442   当   p

 ,

 4 610 8 . 7 10 39 20      nb V m 3

 当分子密排时, b 约为 1 摩尔气体内所有分子体积总和的 4 倍,设分子直径为 d

 有

  3)2(344dN bA  

 其中AN 为阿伏加德罗常数

 1032363110 1 . 310 02 . 6 14 . 3 210 39 3)23(     ANbdm 此时内压强

 914) 10 39 (10 39 . 1) (2 662 2222   banba nVa np in atm

 19- - 21.

 试证:当每摩尔气体的体积增大时,范德瓦耳斯方程就趋近于理想气体状态方程。

 解:由范氏气体压强公式有2 211mmm m mVaVbVRTVab VRTp  

 211mmVaVbVnRT

 ) lim11( lim lim2mmVaVbVnRTp        VnRTVaVbVnRTmm    ) lim11lim (2 

 当 V

 趋于无穷大时

 Vn R Tp 

 nRT pV 

 即当气体摩尔体积增大时,范德瓦耳斯方程趋近于理想气体方程。

 19- - 22. 氮分子的有效直径为1010 8 . 3 m,求它在标准状态下的平均自由程和连续两次碰撞间的平均时间间隔。

 解:分子平均自由程 p dkT22  

  标 准 状 态 是 指 压 强 为 p 一 个 大 气 压 , 温 度 为 摄 氏 C0 的 状 态5 2 102310 013 . 1 ) 10 8 . 3 ( 14 . 3 2273 10 38 . 1      m=5.8×10 -8 m

 氮分子的分子量为 28,在标准状态下平均速率为

 310 28 14 . 3273 31 . 8 8 8   molMRT m〃s -1 =454 m〃s -1

 两次碰撞的的平均时间间隔为

  10810 28 . 145410 8 . 5   — —T s

 19- - 23. 在标准状态下 CO 2 分子的平均自由程810 29 . 6   m。求分子的平均碰撞频率以及分子的有效直径。

 解:

 CO 2 的分子量为 44, 标准状态时 273  T K , CO 2 分子的平均速率为 310 44 11 . 3273 3 . 8 8 8   molMRT m〃s -1 =362 m〃s -1

 分子的平均碰撞频率为

  再由

 21)2(pkTd  =215 823)10 013 . 1 10 29 . 6 14 . 3 2273 10 38 . 1(     m=3.7×10 -10 m

 19- - 24. 一氢分子(直径为1010 0 . 1 m)以方均根速率从炉中   K T 4000  逸出而进入冷的氩气室,室内氩气密度为每立方米2510 0 . 4  原子(氩原子直径1010 0 . 3 m),试问 (1)

 氢分子的速率为多大? (2)

 把氩原子和氢分子都看成球体,则在相互碰撞使他们中心康的最近的距离是多少? 1 9810 76 . 510 29 . 6362     s s 次p dkT22  

 (3)

 最初阶段,请分子每秒内受到的碰撞次数时多少/ 解:(1)氢分子的摩尔质量为 2×10 -3 ㎏〃mol -1

 在 4000  T K 时方均根速率为 33210 06 . 710 24000 3 . 8 3 3   molHMRT m〃s -1

 (2)氢分子和氩原子中心最短距离为 1010 1010 0 . 2210 0 . 3 10 0 . 12    A Hd dm (3)相互碰撞时中心距离为2A Hd d ,所以氢分子和氩原子平均碰撞频率为

    z 2)2(A Hd d2HAn  2 

  =5.0×10 10

 s -1

 19- - 25. 在标准状态下,氦气的内摩擦系数510 89 . 1   Pa〃s ,求 (!)在此状态下氦原子的平均自由程 (2)氦原子的半径 解:(1)在标准状态下氦气的内摩擦系数510 89 . 1   Pa〃s ,氦气摩尔质量为 molM 4.00×10 -3 ㎏〃mol -1 , 氦分子平均速率为 310 4 14 . 3273 31 . 8 8 8   molMRT

 m〃s -1

 =1.20×10 3 m〃s -1

 标准态下,氦气密度为

  3310 4 . 2210 00 . 4  ㎏〃m -3 =0.179 ㎏〃m -3

 由公式

      31 得平均自由程

  3510 20 . 1 179 . 010 89 . 1 3 3     m=2.64×10 -7 m (2)由

  p dkT22  

 得氦原子直径为 5 72310 013 . 1 10 64 . 2 14 . 3 41 . 1273 10 38 . 12      pkTd m=1.78×10 -10 m

 氦原子有效半径为

 1010 89 . 02 dm

 19- - 26. 由实验测定,在标准状态下,氧的扩散系数为1 2 510 9 . 1    s m D ,计算氧分子的平均自由程和分子有效直径。

 解:在标准状态下,氧分子的扩散系数510 9 . 1  D m 2s -1 ,摩尔质量为molM 32×10 -3 ㎏〃mol -1 。氧分子的平均速率为 310 32 14 . 3273 3 . 8 8 8   molMRT m〃s -1 =425 m〃s -1

 由扩散系数公式

   31 D

 得平均自由程 42510 9 . 1 3 35   Dm=1.34×10 -7 m

 又因为

  p dkT22   分子有效直径为 5 72310 013 . 1 10 34 . 1 14 . 3 41 . 1273 10 38 . 12      pkTd m=2.50×10 -10 m 19- - 27. 热水瓶胆的内壁间距 4 . 0  l cm,其间充满 C t20  的 N 2 气,N 2 分子的有效直径1010 7 . 3  d m,问两壁间的压强降低到多大以下时,N 2 的导热系数才会比它在常压下的数值小? 解:当分子平均自由程 l  时,气体热传导系数将随压强降低减小。设在

 27 C且 l  时对应的压强为 p ,当瓶胆间压强降至以下 p 时,氮的热传导系数就比它在大气压下的数值小了。

 因为

 p dkT22     22 dkTp3 2 102310 4 ) 10 7 . 3 ( 14 . 3 41 . 1300 10 38 . 1      =1.70Pa

 即压强应小于 1.7Pa。

相关热词搜索: 气体 理论